
Waihōpai Invercargill

Friday 15th to Sunday 17th of September 2023

https://kiwipycon.nz/

pytest is awesome
Menno-Finlay-Smits

Email: hello@menno.io
GitHub: mjs
Mastodon: @menn0@mastodon.nzoss.nz

I like interruptions

What’s pytest?

● A testing framework for writing and running tests
● Easy to use
● Low on ceremony
● Lots of helpful magic
● It’s fun!
● Arguably the defacto testing framework for Python
● Formerly “py.test”

Minimal Example

Implementation:
def double(x):

 return x + 1

Test (usually in a separate file):

from some.module import double

def test_double():

 assert double(3) == 6

Example Output

Rich Failure Output
Just use assert

● Takes advantage of __repr__ and __str__ methods if implemented
● Otherwise the output isn’t as helpful

Running Tests

Test Discovery

● Just running pytest will cause pytest to go looking for tests
● Running pytest some/dir will start from that location
● Recursive search through directories
● test_*.py and *_test.py files

○ e.g. test_thing.py

Inside a test file…

● Runs functions named test_*
○ e.g. def test_foo()

● Also test_* methods on classes named Test*
○ e.g. TestFoo.test_hello()

● Will also run doctests, unittest and nosetests style tests

Selecting Tests to Run

● -k <regex> - Run only tests with a name matching a regex
● -m <mark> - Run only tests matching a mark (decorator)
● -x - Stop after first test failure (fail fast)
● --lf - Run only the tests that failed during the last test run
● --ff - Run all tests but run the ones that failed previously first
● --nf - Run all tests, but run tests in the new files first

Many of these can be used together

Testing Exceptions

pytest.raises

import pytest

def test_zero_div():

 with pytest.raises(ZeroDivisionError):

 1 / 0

def test_another_div():

 with pytest.raises(ZeroDivisionError):

 4 / 2

def test_err_message():

 with pytest.raises(ValueError, match= "foo.+"):

 raise ValueError("foo bar")

Exception Testing Output

Test Setup and Teardown

“Test Fixtures”

Flexible, modular test setup and teardown

Pros

● Only the exact setup need for test is used
● Test setup dependencies are explicit
● Concise
● Controlled scope

Cons

● A little too “magic”?

Text Fixtures Example
import pytest

@pytest.fixture
def a_list():
 return [1, 2]

def test_can_append_3(a_list):
 assert len(a_list) == 2
 a_list.append(3)
 assert 3 in a_list

def test_can_append_99(a_list):
 assert len(a_list) == 2
 a_list.append(99)
 assert 99 in a_list

More Fixtures

import os

import sqlite3

import pytest

@pytest.fixture

def db():

 DB_NAME = "__test.db"

 con = sqlite3.connect(DB_NAME)

 con.execute("CREATE TABLE person(name, age)")

 con.execute("INSERT INTO person VALUES ('Sam', 25)")

 yield con

 con.close()

 os.unlink(DB_NAME)

Continued…

def test_can_insert(db):

 db.execute("INSERT INTO person VALUES ('Sofia', 27)")

 assert len(db.execute("SELECT * FROM person").fetchall()) == 2

def test_fixture_resets(db):

 assert len(db.execute("SELECT * FROM person").fetchall()) == 1

def test_something_else():

 ...

Comparison to unittest

import os, sqlite3, unittest

class TestDB(unittest.TestCase):

 def setUp(self):

 self.con = sqlite3.connect(DB_NAME)

 self.con.execute("CREATE TABLE person(name, age)")

 self.con.execute("INSERT INTO person VALUES ('Sam', 25)")

 def tearDown(self):

 con.close()

 os.unlink(DB_NAME)

 def test_can_insert(db):

 db.execute("INSERT INTO person VALUES ('Sofia', 27)")

 assert len(db.execute("SELECT * FROM person").fetchall()) == 2

More on Fixtures

● Tests can request more than one fixture
● Fixtures can request other fixtures!
● Fixtures can be scoped
● Fixtures can be shared
● Fixtures can be automatically applied (autouse)

Useful Built-In Fixtures

● tmp_path - Creates a temporary directory that will be automatically
cleaned up

● caplog - Capture logs emitted by the logging package
● capfd - Capture stdout and stderr
● monkeypatch - See the next section

(Monkey)patching

Monkeypatching

● Temporarily changing dependencies of code being tested
● Replace with a fake/mock/stub object
● Controls test environment
● Helps avoid calls to external dependencies
● Don’t overdo it!

Etymology: guerrilla patch -> gorilla patch -> monkey patch

Patching Example - Implementation

import requests

URL = "https://some.api/users"

def call_api():

 r = requests.get(URL)

 return r.json()

def get_user_ids():

 return [u.id for u in call_api()["users"])

Patching Example - Test

import requests

import app

class MockResponse:

 @staticmethod

 def json():

 return {"users": [{"id": 1}, {"id": 2}]}

def test_get_user_ids(monkeypatch):

 def mock_get(url):

 assert url == "https://some.api/users"

 return MockResponse()

 monkeypatch.setattr(requests, "get", mock_get)

 assert app.get_user_ids() == [1, 2]

More on monkeypatching

Can modify:

● attributes of modules and objects
● dict items (including deletion)
● environment variables (including deletion)
● working directory

Parameterising Tests

Running Tests With Multiple Sets of Inputs

import pytest

def add(a, b):

 return a + b

@pytest.mark.parametrize("a,b,want", [(1, 2, 3), (4, 2, 6), (-1, 1, 0)])

def test_add(a, b, want):

 assert add(a, b) == want

Multiple Tests are Generated

with verbose output (-v flag)

Pros and Cons

Pros

● Easy to add new cases
● Easier to identify the failing cases
● Separate tests means tests continue

after a failure

Cons

● Hard to read when many parameters
● Good taste is required when there’s

many test cases

Cleaner Way of Defining Cases

add_cases = [

 (1, 2, 3),

 (4, 2, 6),

 (-1, 1, 0),

]

@pytest.mark.parametrize("a,b,want", add_cases)

def test_add(a, b, want):

 assert add(a, b) == want

Parameterizing All Tests on a Class

@pytest.mark.parametrize("n,expected", [(1, 2), (3, 4)])

class TestClass:

 def test_simple_case(self, n, expected):

 assert n + 1 == expected

 def test_weird_simple_case(self, n, expected):

 assert (n * 1) + 1 == expected

Moar!

More pytest functionality which for real world projects:

● Conditionally or unconditionally skipping tests
○ These are tracked and highlighted separately from passing and failing tests

● Handling of tests which are known to fail (xfail)
○ Perhaps only under certain conditions
○ Will fail if the test doesn’t fail in the expected way

Questions?

